Reversible Martensitic Transformation under Low Magnetic Fields in Magnetic Shape Memory Alloys
نویسندگان
چکیده
منابع مشابه
Reversible Martensitic Transformation under Low Magnetic Fields in Magnetic Shape Memory Alloys
Magnetic field-induced, reversible martensitic transformations in NiCoMnIn meta-magnetic shape memory alloys were studied under constant and varying mechanical loads to understand the role of coupled magneto-mechanical loading on the transformation characteristics and the magnetic field levels required for reversible phase transformations. The samples with two distinct microstructures were test...
متن کاملMartensitic Transformation in Shape Memory Alloys under Magnetic Field and Hydrostatic Pressure
1Department Materials Science and Engineering, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan 2Low Temperature Center, Osaka University, Toyonaka 560-8531, Japan 3Research Center for Materials and Science at Extreme Conditions, Osaka University, Toyonaka 560-8531, Japan 4Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656...
متن کاملMagnetic field-induced reversible actuation using ferromagnetic shape memory alloys
This paper presents a simple method to examine whether a ferromagnetic shape memory alloy can be used as an actuator by controlling the transformation temperature by magnetic field. Both Fe–Pd and NiAlCo alloys are studied. The analysis results show the recently discovered alloy of NiAlCo cannot be used. Although an Fe–Pd alloy can be used, in principle, for magnetic field actuation, the work e...
متن کاملIsothermal martensitic transformation in metamagnetic shape memory alloys
We show that in metamagnetic shape memory alloys exhibiting a magnetostructural first order phase transition the direct transition from ferromagnetic austenite to nonmagnetic martensite is isothermal. In contrast to the direct transformation, the reverse one nonmagnetic martensite–ferromagnetic austenite is athermal, just as are athermal both direct and reverse martensitic transformations in co...
متن کاملTwo types of martensitic phase transformations in magnetic shape memory alloys by in-situ nanoindentation studies.
Ni based magnetic shape memory alloys (MSMAs) have broad applications in actuators and MEMS devices. Two-stage stress induced martensitic phase transformation, a widely observed phenomenon in these alloys, is described conventionally as a fi rst stage L21 (austenite)-to-10M/14M (M: modulated martensite) transition, followed by a second stage 14M-to-L10 (tetragonal martensite) transformation at ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2017
ISSN: 2045-2322
DOI: 10.1038/srep40434